ag的問題,透過圖書和論文來找解法和答案更準確安心。 我們查出實價登入價格、格局平面圖和買賣資訊

ag的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦寫的 Handbook of Computational Neurodegeneration 和的 Viral and Antiviral Nanomaterials: Synthesis, Properties, Characterization, and Application都 可以從中找到所需的評價。

這兩本書分別來自 和所出版 。

國立臺北科技大學 電資學院外國學生專班(iEECS) 白敦文所指導 VAIBHAV KUMAR SUNKARIA的 An Integrated Approach For Uncovering Novel DNA Methylation Biomarkers For Non-small Cell Lung Carcinoma (2022),提出 ag關鍵因素是什麼,來自於Lung Cancer、LUAD、LUSC、NSCLC、DNA methylation、Comorbidity Disease、Biomarkers、SCT、FOXD3、TRIM58、TAC1。

而第二篇論文國立臺北科技大學 材料科學與工程研究所 陳柏均、陳適範所指導 胡進煇的 鉍改質二氧化鈦奈米管陣列電極應用於脫鹽及能量儲存之雙功能電池 (2021),提出因為有 二氧化鈦奈米管、陽極處理、鉍、氯氧化鉍、氯儲存電極、無電鍍的重點而找出了 ag的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了 ag,大家也想知道這些:

Handbook of Computational Neurodegeneration

為了解決 ag的問題,作者 這樣論述:

Dr. Panayiotis Vlamos, Professor, Ionian University, Greece, Director of Bioinformatics and Human Electrophysiology Lab (BiHELab).Dr. Ilias S. Kotsireas, Professor, Wilfrid Laurier University, Waterloo, Ontario, Canada; and Director, Research Center on Computational Biomarkers.Dr. Ioannis Tarnanas S

enior Research Fellow ETH Health-IS Lab - Global Brain Health Institute (GBHI) Founder Altoida AG Lucerne, Switzerland.

ag進入發燒排行的影片

An Integrated Approach For Uncovering Novel DNA Methylation Biomarkers For Non-small Cell Lung Carcinoma

為了解決 ag的問題,作者VAIBHAV KUMAR SUNKARIA 這樣論述:

Introduction - Lung cancer is one of primal and ubiquitous cause of cancer related fatalities in the world. Leading cause of these fatalities is non-small cell lung cancer (NSCLC) with a proportion of 85%. The major subtypes of NSCLC are Lung Adenocarcinoma (LUAD) and Lung Small Cell Carcinoma (LUS

C). Early-stage surgical detection and removal of tumor offers a favorable prognosis and better survival rates. However, a major portion of 75% subjects have stage III/IV at the time of diagnosis and despite advanced major developments in oncology survival rates remain poor. Carcinogens produce wide

spread DNA methylation changes within cells. These changes are characterized by globally hyper or hypo methylated regions around CpG islands, many of these changes occur early in tumorigenesis and are highly prevalent across a tumor type.Structure - This research work took advantage of publicly avai

lable methylation profiling resources and relevant comorbidities for lung cancer patients extracted from meta-analysis of scientific review and journal available at PubMed and CNKI search which were combined systematically to explore effective DNA methylation markers for NSCLC. We also tried to iden

tify common CpG loci between Caucasian, Black and Asian racial groups for identifying ubiquitous candidate genes thoroughly. Statistical analysis and GO ontology were also conducted to explore associated novel biomarkers. These novel findings could facilitate design of accurate diagnostic panel for

practical clinical relevance.Methodology - DNA methylation profiles were extracted from TCGA for 418 LUAD and 370 LUSC tissue samples from patients compared with 32 and 42 non-malignant ones respectively. Standard pipeline was conducted to discover significant differentially methylated sites as prim

ary biomarkers. Secondary biomarkers were extracted by incorporating genes associated with comorbidities from meta-analysis of research articles. Concordant candidates were utilized for NSCLC relevant biomarker candidates. Gene ontology annotations were used to calculate gene-pair distance matrix fo

r all candidate biomarkers. Clustering algorithms were utilized to categorize candidate genes into different functional groups using the gene distance matrix. There were 35 CpG loci identified by comparing TCGA training cohort with GEO testing cohort from these functional groups, and 4 gene-based pa

nel was devised after finding highly discriminatory diagnostic panel through combinatorial validation of each functional cluster.Results – To evaluate the gene panel for NSCLC, the methylation levels of SCT(Secritin), FOXD3(Forkhead Box D3), TRIM58(Tripartite Motif Containing 58) and TAC1(Tachikinin

1) were tested. Individually each gene showed significant methylation difference between LUAD and LUSC training cohort. Combined 4-gene panel AUC, sensitivity/specificity were evaluated with 0.9596, 90.43%/100% in LUAD; 0.949, 86.95%/98.21% in LUSC TCGA training cohort; 0.94, 85.92%/97.37 in GEO 66

836; 0.91,89.17%/100% in GEO 83842 smokers; 0.948, 91.67%/100% in GEO83842 non-smokers independent testing cohort. Our study validates SCT, FOXD3, TRIM58 and TAC1 based gene panel has great potential in early recognition of NSCLC undetermined lung nodules. The findings can yield universally accurate

and robust markers facilitating early diagnosis and rapid severity examination.

Viral and Antiviral Nanomaterials: Synthesis, Properties, Characterization, and Application

為了解決 ag的問題,作者 這樣論述:

Devarajan Thangadurai, PhD, is Assistant Professor at Karnatak University, Dharwad in India and did his postdoctoral research at the University of Madeira, Portugal, University of Delhi, India, and ICAR National Research Centre for Banana, India. He is the recipient of Best Young Scientist Award wit

h Gold Medal from Acharya Nagarjuna University, India, and the VGST-SMYSR Young Scientist Award of the Government of Karnataka, India. He has interest and expertise in the fields of biotechnology and nanotechnology for sustainable future. He has authored/edited more than twenty five books with inter

national publishers in USA, Canada, Switzerland and India. He has authored/coauthored 210 publications inclusive of journal articles, book chapters, books and invited presentations. He has extensively travelled to many universities and institutes in Africa, Europe and Asia for academic works, scient

ific meetings, and international collaborations. Saher Islam, PhD, is an HEC Scholar (Higher Education Commission) of the Islamic Republic of Pakistan at the University of Veterinary and Animal Sciences, Lahore, where she received her BS, MPhil and PhD in Molecular Biology, Biotechnology and Bioinfo

rmatics. She is IRSIP Scholar at Cornell University, New York and Visiting Scholar at West Virginia State University, West Virginia in USA. She has keen research interests in genetics, molecular biology, biotechnology, and bioinformatics pertaining to animal, dairy and food science, and has ample ha

nds on experience in molecular marker analysis, whole genome sequencing and RNA sequencing. She has visited USA, UK, Singapore, Germany, Italy and Russia for academic and scientific trainings, courses, and meetings. She is the recipient of 2016 Boehringer Ingelheim Fonds Travel Grant from European M

olecular Biology Laboratory, Germany. She is an author/coauthor of 50 publications including journal articles, book chapters, books and conference presentations. Charles Oluwaseun Adetunji, PhD, is presently the Ag. Director of Intellectual Properties and Technology Transfer; Chairman Committee on R

esearch Grant and Associate Professor of Microbiology and Biotechnology at EUI. He has won several scientific awards and grants from renowned academic bodies like Council of Scientific and Industrial Research (CSIR) India, and Department of Biotechnology (DBT) India, The World Academy of Science (TW

AS) Italy, Netherlands Fellowship Programme (NPF) Netherlands, The Agency for International Development Cooperation Israel, Royal Academy of Engineering UK among many others. He has filed several scientific patents on nanobiosurfactants, nanobiopesticdes and many more. He has published over 150 scie

ntific journals and conference proceedings in international and local refereed journals. His research interest includes microbiology, biotechnology, post-harvest management, and nanotechnology. He is an editorial board member of many international journals and serves as a reviewer to many double-bli

nd peer review journals of Elsevier, Springer, Taylor and Francis, Wiley, PLOS One, Nature, American Chemistry Society, Bentham Science Publishers etc. He is a member of many scientific and professional bodies like American Society for Microbiology, Nigerian Young Academy, Biotechnology Society of N

igeria, and Nigerian Society for Microbiology. He has won international recognition and also acted as a keynote speaker delivering invited talk/position paper at various universities, research institutes and several centers of excellence which span across several continent of the globe. He has over

the last fifteen years built strong working collaborations with reputable research groups in numerous and leading Universities across the globe. He is the convener for Recent Advances in Biotechnology, which is an annual international conference where renowned microbiologists and biotechnologists co

me together to share their latest discoveries. He is also the Founder & CEO of BECTIK Biotechnology and Nanotechnology Company.

鉍改質二氧化鈦奈米管陣列電極應用於脫鹽及能量儲存之雙功能電池

為了解決 ag的問題,作者胡進煇 這樣論述:

隨著人口增加、劇烈的氣候變化和環境的污染,水資源匱乏以及能源危機問題將會在未來幾十年內持續下去。由於海洋的水資源無限,海水淡化自然成為了解決淡水短缺的解答。海水淡化可以使高濃度的海水轉化成淡水,藉以增加淡水的量,且不受氣候的影響。主要研究是發展低耗能、低成本以及多樣化的淡化技術。鉍除了可以做為氯氣的儲存電極,也發現可以應用於可充電之脫鹽電池,另外鉍和氯氧化鉍皆不可溶於寬廣的pH值以及電位範圍的鹽水溶液,因此在海水中能夠重複使用。本研究以陽極處理得之的二氧化鈦奈米管作為模板,透過無電鍍法將鉍沉積於二氧化鈦奈米管作為氯化物儲存電極。氯離子以氯氧化鉍形式儲存在鉍奈米管陣列中。為探討氯化及脫氯行為,

以實驗半電池反應對鉍奈米管陣列電極進行線性掃描伏安法 (LSV) 和循環伏安法 (CV)。以及探討由不同電壓20V、30V以及40V二氧化鈦奈米管模板製備下,鉍奈米管陣列的差別。