FloTrac ppt的問題,透過圖書和論文來找解法和答案更準確安心。 我們查出實價登入價格、格局平面圖和買賣資訊

另外網站flotrac 適應症相關資訊 - 哇哇3C日誌也說明:flotrac 適應症,flotrac適應症:: 合法醫療器材資訊網,症照護、心血管疾病、加護病房、腦中風、長期照護、尿失禁等...師評估符合「經皮內視鏡胃造口」適應症的.

長庚大學 臨床醫學研究所 鄭美玲、余黃平所指導 蔡欣怡的 從臨床血液動力學到基礎代謝體學探討肝臟器官移植 (2018),提出FloTrac ppt關鍵因素是什麼,來自於肝臟移植、生物標記、血液動力學、代謝體學。

而第二篇論文國立臺灣師範大學 生命科學系 鄭劍廷所指導 吳峻宇的 手術條件下的靜脈輸液治療: 從基礎醫學研究到臨床醫學應用 (2016),提出因為有 腹部臟器微循環、膠體溶液、高張溶液、氧化壓力、肝硬化、動態輸液反應性指標、腦部手術的重點而找出了 FloTrac ppt的解答。

最後網站Stroke volume variation (SVV) and pulse pressure variation ...則補充:During inspiration (with positive pressure ventilation), the increase in intrathoracic pressure compresses the venae cavae. This subsequently reduces preload, ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了FloTrac ppt,大家也想知道這些:

從臨床血液動力學到基礎代謝體學探討肝臟器官移植

為了解決FloTrac ppt的問題,作者蔡欣怡 這樣論述:

指導教授推薦書……………………………………………………口試委員審定書……………………………………………………誌謝………………………………………………………………… iii中文摘要……………………………………………………………. vABSTRACT………………………………………………………… viiABBREVIATION………………………………………………….. ixChapter 1 Introduction on Liver Transplantation......................... 11.1 Types of Liver Tra

nsplantation……………………………... 21.1.1 De Novo Malignancies after Liver Transplantation from Taiwan’s Database……………………………. 41.1.2 Cardiovascular Disease Risks after Liver Transplantation from Taiwan’s Database……………. 71.2 Selection Criteria on Recipient……………………………... 101.3 Selectio

n Criteria on Living Donor………………………… 121.4 Intraoperative Monitoring and Management……………….. 141.4.1 Arterial Waveform Monitoring –FloTrac…………… 161.4.2 Electrical Velocimetry Monitoring System - Aesculon™………………………………………….. 181.5 Primary Graft Dysfunction…………………………………. 24Cha

pter 2 Introduction to Instrumentation in Metabolomic Analysis…………………………………………………………….. 272.1 Metabolomics……………………………………………….. 272.2 Nuclear Magnetic Resonance Spectroscopy……………………………………………………. 292.3 Mass Spectrometry…………………………………………. 312.4 Data Analysis……………………………………………….. 34Chapter

3 A Lipidomic Study of Early Allograft Dysfunction In Living Donor Liver Transplantation……………………………... 383.1 Methods and Materials……………………………………… 403.1.1 Patient Selection……………………………………… 403.1.2 Blood Samples……………………………………….. 413.1.3 NMR analysis of the plasma…………………………. 413.1.4 Liqui

d Chromatography coupled with Mass Spectrometry based Lipidomic…………………………….. 433.1.5 Ultra-performance liquid chromatography (UPLC)-based amino acid measurement…………………... 453.1.6 Statistical analysis……………………………………. 463.2 Results………………………………………………………. 473.2.1 Demographics and Clinical Dat

a…………………….. 473.2.2 Change in circulatory amino acid profiles in recipients with EAD……………………………………….. 483.2.3 Changes in NMR plasma profiles in recipients with EAD………………………………………………………… 483.2.4 Changes in circulatory lipid profiles in recipients with EAD………………………………………………………… 493.2.5 Dis

criminative ability of potential biomarkers for EAD and in-hospital mortality…………………………… 493.2.6 External validation of lipidomic profiling as prediction of EAD, long hospital stay and in-hospital mortality……………………………………………………. 503.3 Discussion……….………………………………………….. 513.3.1 Amino Acid………………

………………………...… 513.3.2 Lipids…………………………………………………. 523.3.3 Bilirubin……………………………………………… 55Chapter 4 Conclusion........................................................................ 56Chapter 5 Future Perspectives…………………………………... 59Chapter 6 Figures…………………………………………………. 60Figure 1. Flowchar

t of organ transplant recipients during 1996-201.. 60Figure 2. Flowchart of organ transplant patients during 1996-2011... 61Figure 3. Cumulative probability of any kind of vascular diseasefrom years after organ transplant…………………………………….62Figure 4. Cumulative probability of cardiovascular disease fro

myears after organ transplant…………………………………………..63Figure 5 Cumulative probability of cerebrovascular disease fromyears after organ transplant…………………………………………..64Figure 6. Cumulative probability of peripheral vascular disease fromyears after organ transplant…………………………………………..65Figure 7. Cumulative pro

bability of deep vein thrombosis fromyears after organ transplant………………………………………….66Figure 8. Modified formula of cardiac output analyses for theFloTrac algorithm…………………………………………………… 67Figure 9. Bland-Altman plot for COEv and COPAC………………… 68Figure 10. Four-quadrant plot for comparing changes in COEv

andCOPAC……………………………………………………………….69Figure 11. Schematic of the electrospray ionization process………... 70Figure 12. Flow diagram of the patient selection, allocation andanalysis……………………………………………………………… 71Figure 13. 1H NMR plasma profile model………………………….. 72Figure 14. 1H NMR plasma profile model………………

………….. 73Figure 15. Plasma samples analyzed by LC-MS in electrospraypositive ion mode, comparing EAD and nonEAD recipients inOPLS-DA plot……………………………………………………… 74Figure 16. Plasma samples analyzed by LC-MS in electrospraypositive ion mode, comparing EAD and nonEAD recipients in 75S-plot……………………………………

……………………………Figure 17. Plasma samples analyzed by LC-MS in electrospraypositive ion mode, comparing EAD and nonEAD recipients by classpermutation analysis………………………………………………… 76Figure 18. Prediction of early allograft dysfunction in study cohort... 77Figure 19. Prediction of long hospital stay in stud

y cohort…………. 78Figure 20. Prediction of all-cause in-hospital mortality in studycohort…………………………………………………………….......79Figure 21. Prediction of early allograft dysfunction in validationcohort………………………………………………………………...80Figure 22. Prediction of long hospital stay in validation cohort…….. 81Figure 23

. Prediction of all-cause in-hospital mortality in validationcohort ………………………………………………………………..82Figure 24. Schematic illustration of metabolic disturbancesassociated with poor outcomes of liver transplants………………… 83Chapter 7 Tables………………………..………………………….. 84Table 1. Risk of malignancies in liver tran

plant recipients………….. 84Table 2. Risk of vascular disease in liver transplant recipients……... 86Table 3. Summary of clinical data for living donor livertransplantation recipients……………………………………………. 87Table 4. Biochemical data for the patients before and after livertransplantation……………………………………………………

….88Table 5. Concentrations of amino acids at T6 in study group………. 90Table 6. A List of metabolites that discriminated the EAD from thenon-EAD groups …………………………………………………….91Table 7. Receiver operating characteristic (ROC) curve analysis forindividual metabolites in study and validation group……………….

93Table 8. Demographic details from the validation population……… 94Table 9. Biochemical details from the validation study population… 95Chapter 8 References…….………………………………………... 96Appendix……………………………………………………………. 112List of FiguresFigure 1. Flowchart of organ transplant recipients during 1996-201..

60Figure 2. Flowchart of organ transplant patients during 1996-2011... 61Figure 3. Cumulative probability of any kind of vascular diseasefrom years after organ transplant…………………………………….62Figure 4. Cumulative probability of cardiovascular disease fromyears after organ transplant…………………………………………..63Fi

gure 5 Cumulative probability of cerebrovascular disease fromyears after organ transplant…………………………………………..64Figure 6. Cumulative probability of peripheral vascular disease fromyears after organ transplant…………………………………………..65Figure 7. Cumulative probability of deep vein thrombosis fromyears after or

gan transplant………………………………………….66Figure 8. Modified formula of cardiac output analyses for theFloTrac algorithm…………………………………………………… 67Figure 9. Bland-Altman plot for COEv and COPAC………………… 68Figure 10. Four-quadrant plot for comparing changes in COEv andCOPAC……………………………………………………………….69Figure 11. Sche

matic of the electrospray ionization process………... 70Figure 12. Flow diagram of the patient selection, allocation andanalysis……………………………………………………………… 71Figure 13. 1H NMR plasma profile model………………………….. 72Figure 14. 1H NMR plasma profile model………………………….. 73Figure 15. Plasma samples analyzed by LC-M

S in electrospraypositive ion mode, comparing EAD and nonEAD recipients inOPLS-DA plot……………………………………………………… 74Figure 16. Plasma samples analyzed by LC-MS in electrospraypositive ion mode, comparing EAD and nonEAD recipients inS-plot………………………………………………………………… 75Figure 17. Plasma samples analyzed by LC

-MS in electrospraypositive ion mode, comparing EAD and nonEAD recipients by classpermutation analysis………………………………………………… 76Figure 18. Prediction of early allograft dysfunction in study cohort... 77Figure 19. Prediction of long hospital stay in study cohort…………. 78Figure 20. Prediction of all-cause

in-hospital mortality in studycohort…………………………………………………………….......79Figure 21. Prediction of early allograft dysfunction in validationcohort………………………………………………………………...80Figure 22. Prediction of long hospital stay in validation cohort…….. 81Figure 23. Prediction of all-cause in-hospital mortality in

validationcohort ………………………………………………………………..82Figure 24. Schematic illustration of metabolic disturbancesassociated with poor outcomes of liver transplants………………… 83List of TablesTable 1. Risk of malignancies in liver tranplant recipients………….. 84Table 2. Risk of vascular disease in liver transplant

recipients……... 86Table 3. Summary of clinical data for living donor livertransplantation recipients……………………………………………. 87Table 4. Biochemical data for the patients before and after livertransplantation……………………………………………………….88Table 5. Concentrations of amino acids at T6 in study group………. 90Table 6.

A List of metabolites that discriminated the EAD from thenon-EAD groups …………………………………………………….91Table 7. Receiver operating characteristic (ROC) curve analysis forindividual metabolites in study and validation group……………….93Table 8. Demographic details from the validation population……… 94Table 9. Bio

chemical details from the validation study population… 95

手術條件下的靜脈輸液治療: 從基礎醫學研究到臨床醫學應用

為了解決FloTrac ppt的問題,作者吳峻宇 這樣論述:

靜脈輸液可視為一種藥物治療,為改善低血容狀態下身體循環的第一線治療方式,因此可算是所有外科病人最常接受到的治療項目。適當的靜脈輸液應包含三個層面:正確的輸液種類、正確的輸液時機以及正確的輸液總量,這三個層面只要有其中一項沒有達到,靜脈輸液便可能無法發揮療效,甚至導致傷害。靜脈輸液治療的目的,在於改善低血容狀態(例如:出血性休克)下的循環狀態。目前文獻已經證明,微循環(小於100微米小血管)的改善,比傳統大循環系統指標(如:平均動脈壓、心跳數),與預後有更高的關聯性。不同腹部臟器微循環,例如:肝、腎、腸組織,不但對低血容有不同的耐受度,也是病變發展成多器官衰竭的關鍵因子。治療低血溶狀態時,唯有

改善腹部臟器微循環才可真正預防不可逆的器官傷害。因此本論文的第一部分前半段,乃是利用雷射斑駁影像技術,發展出可即時同步觀察在出血性休克時,腹部臟器微循環變化的大鼠模型。我們發現雖然微循環血氧濃度在各腹部臟器中,有等量下降的狀態,但以腸黏膜微循環血流量對於出血性休克有最差的耐受性,相對之下,肝腎與周邊肌肉組織的微循環血流量則有較佳的耐受性。而本論文的第一部分後半段,則希望進一步探討臨床上常使用的靜脈液體製品包含晶體溶液(如:0.9%食鹽水)、膠體溶液(如:澱粉製品與明膠製品)以及高張溶液(如:3%食鹽水),在出血性休克狀態下,對腹部臟器微循環的療效差異。以不同種類靜脈輸液治療,不僅可能會造成不同

程度的循環改善,也可能伴隨不同程度的缺血再灌流症狀而造成不等量的氧化壓力。在腹部臟器中,以腎臟有最明顯的缺血再灌流效應。臨床上,以治療膠體溶液治療重症病人的低血溶狀態,被發現有較高機率在治療後發生急性腎損傷,這個現象可能與缺血再灌流與氧化壓力有關。因為氧化壓力產物有極短的半衰期,因此我們利用活體自由基偵測技術,精確定量大鼠在出血性休克下與靜脈輸液治療後,腎組織活體自由基產生的變化。我們發現,以靜脈輸液治療出血性休克,晶體溶液無法改善腸黏膜微循環血流量,只有膠體溶液與高張溶液可有效改善腸黏膜微循環血流量。但是膠體溶液,包含澱粉製品以及明膠製品,相較於晶體溶液與高張溶液,會產生極大量的腎臟自由基,

此現象極有可能與臨床文獻觀察到膠體溶液造成的急性腎損傷相關。總結本論文第一部分的前半與後半段,我們發現到腸黏膜微循環血流量對於出血性休克狀態下有最明顯的損傷,臨床的靜脈輸液治療僅有膠體溶液與高張溶液可以有效改善腸黏膜微循環血流量。但是使用膠體溶液治療時,有可能造成缺血性再灌流症狀而產生大量腎臟氧化壓力而導致急性腎損傷。臨床上,如何精確判斷適當的靜脈輸液量時機。目前臨床上最適合的輸液指標,當屬動態輸液反應性指標。這類指標可反映出在正壓呼吸下,心臟與肺部間相互影響下的變異率。體容越低的狀態下,心臟受到呼吸的吸氣期與吐氣期的擠壓影響變越大,反映在同一個呼吸週期下的脈搏壓、心輸出量的變異率變越大。因此

當動態輸液反應性指標反映出變異率高過閾值時,給予靜脈輸液便有極高機率可提升心輸出量(此現象稱之為「輸液反應性」),進而改善循環。但這類指標過去多半是在血管張力正常的病人中被應用,而臨床上有某一些特殊病理狀態會造成血管張力的異常,例如:肝硬化的患者,因為體內血管擴張物質無法被正常代謝,而有周邊血管阻力大幅下降的特徵。但是動態輸液反應性指標,卻從未在肝硬化病人身上證實有效。本論文的第二部分,探討我們在肝硬化病人,驗證目前臨床上最常見的三種動態輸液反應性指標,包括:脈搏壓變異率、心搏量變異率以及指端血容積變異率,是否在肝硬化病人也適用。結果我們發現,這三個指標在肝硬化病人身上,雖然較其他外科病人有較

為下降的準確度,仍保有臨床實用的偵測度,足以幫助臨床醫師,判斷肝硬化病人是否可藉由靜脈輸液而改善心輸出量與循環。本論文的第三部分,希望探討如何判斷正確的靜脈輸液總量,而此議題針對不同的手術器官,可能存在不同的標準。因為若器官沒有缺血風險存在,則即使在靜脈輸液可提升心輸出量而改善循環的時機下,過量的輸液仍可能導致組織水腫而造成傷害。以腦部手術而言,此類的臨床判斷充滿挑戰性。因為腦部組織佔總體心輸出量的比例極高,尤其在手術過程中可能有更高的血流量需求,但同時過多的輸液也可能因腦組織水腫而造成傷害。前述之動態輸液反應性指標,研究證實存在著一個「灰色地帶」,在此區間的下界限值與上界限值,分別代表了對輸

液反應性高特異度與高敏感度的狀態,亦即手術中輸液若以下界限值與上界限值為目標,分別代表著儘量輸液增加心輸出量與謹慎(限制性)輸液以避免過多體液的輸液策略。依此特性,我們在腦部切除手術患者,驗證究竟腦部手術的靜脈輸液量較適合在動態輸液反應性指標灰色地帶的上界或下界。研究結果發現,靜脈輸液控制在下界的患者,有較短的加護病房停留時間、較少的術後神經學症狀、較佳的出院日常生活功能性評分、較少的術中乳酸堆積,以及較少的術後血清神經專一性蛋白表現。證實接受腦部手術患者,術中輸液量應以儘量增加心輸出量為目標,才是較佳的輸液策略。靜脈輸液治療在手術狀態下的重要性,在現代醫學的進步下,不但沒有減少,反而更加重要

。總結本論文的發現,我們從基礎醫學的動物模型探討腹部臟器微循環在低血容下的病理變化,進一步證實高張溶液與膠體溶液對腸黏膜微循環的效果,並且發現膠體溶液對於腎臟缺血再灌流的現象可能與急性腎損傷相關。進一步到臨床應用上,證實動態輸液反應性指標此類參數,在肝硬化此類血管張力特殊變化的病人,仍然足夠精確幫助臨床醫師判斷靜脈輸液的時機點。最後,在腦部手術中,證實靜脈輸液量已儘量增加心輸出量的目標的策略,對於預後有較佳的效果。對於靜脈輸液治療中,「正確的輸液種類、正確的輸液時機以及正確的輸液總量」這三個層面,未來有更進一步機制的探討,將有機會更加增進手術患者的臨床照護。我們的研究從此觀點出發,未來,也將在

此層面做出更深入的探討。