ansys workbench的問題,透過圖書和論文來找解法和答案更準確安心。 我們查出實價登入價格、格局平面圖和買賣資訊

ansys workbench的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦丁金濱寫的 ANSYS Workbench 18.0有限元分析案例詳解 和李輝煌 的 Finite Element Simulations with ANSYS Workbench 2019(附影音光碟)都 可以從中找到所需的評價。

另外網站ANSYS, Inc. (NASDAQ:ANSS) Short Interest Update也說明:It offers ANSYS Workbench, a framework upon which its multiphysics ... While ANSYS currently has a "Hold" rating among analysts, top-rated ...

這兩本書分別來自清華大學 和全華圖書所出版 。

國立高雄科技大學 機械工程系 黃世疇所指導 鄭閔文的 銑削加工表面粗糙度之最佳化分析 (2021),提出ansys workbench關鍵因素是什麼,來自於航空工業、有限元素法、田口方法、表面粗糙度。

而第二篇論文國立虎尾科技大學 機械與電腦輔助工程系碩士班 許坤明所指導 何任凱的 超音波焊頭振動分析與最佳化設計 (2021),提出因為有 超音波焊頭、自然頻率、最大振幅、最佳化、反應曲面的重點而找出了 ansys workbench的解答。

最後網站Finite Element Simulations with ANSYS Workbench 2022: ...則補充:... ANSYS Student 2022 • Printed in full color Description Table of Contents Finite Element Simulations with ANSYS Workbench 2022 is a comprehensive and easy to ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了ansys workbench,大家也想知道這些:

ANSYS Workbench 18.0有限元分析案例詳解

為了解決ansys workbench的問題,作者丁金濱 這樣論述:

本書以ANSYS公司有限元分析軟體Workbench 18.0為操作平臺,詳細介紹了軟體的功能及應用。   全書共分為19章,首先以各個分析模組為基礎,介紹ANSYS Workbench 18.0的建模、網格劃分、分析設置、結果後處理,然後以專案範例為指導,講解Workbench在結構靜力學分析、模態分析、諧回應分析、回應譜分析、隨機振動分析、瞬態動力學分析、接觸分析、顯示動力學分析、複合材料分析、疲勞分析、多體動力學分析、穩態熱力學分析、瞬態熱力學分析、流體動力學分析、電場分析、磁場分析及多物理場耦合分析中的應用。隨書附贈書中案例所用的原始檔案,供讀者在學習本書時進行操作練習和參考。   本

書工程實例豐富,講解詳盡,內容安排循序漸進,既適合理工院校土木工程、機械工程、力學、電氣工程、能源、電子通信、航空航太等相關專業的高年級本科生、研究生及教師使用,也可以作為相關工程技術人員從事工程研究的參考書。 丁源,高級工程師,已從事機械設計及模擬計算工作十餘年。精通ANSYS、AutoCAD、Pro/Engineer、Fluent等軟體,曾出版《UG NX 8.0中文版從入門到精通》等計算。 第1章 有限元基本理論 1 1.1 有限元法發展綜述 1 1.1.1 有限元法的孕育過程及誕生和發展 2 1.1.2 有限元法的基本思想 2 1.1.3 有限元

的應用及其發展趨勢 4 1.2 有限元分析基本理論 6 1.2.1 有限元分析的基本概念和計算步驟 6 1.2.2 基於最小勢能原理的有限元法 13 1.2.3 杆系結構的非線性分析理論 17 1.2.4 穩定計算理論 26 1.3 本章小結 28 第2章 ANSYS Workbench 18.0概述 29 2.1 ANSYS Workbench 18.0平臺及模組 29 2.1.1 Workbench平臺介面 30 2.1.2 功能表列 30 2.1.3 工具列 36 2.1.4 工具箱 36 2.2 DesignModeler 18.0幾何建模 40 2.2.1 DesignModele

r幾何建模平臺 40 2.2.2 功能表列 41 2.2.3 工具列 48 2.2.4 常用命令列 50 2.2.5 Tree Outline(模型樹) 50 2.2.6 DesignModeler幾何建模實例—— 連接板 52 2.3 ANSYS SpaceClaim Direct Modeler 幾何建模 60 2.3.1 SpaceClaim幾何建模平臺 60 2.3.2 功能表選項卡 61 2.4 ANSYS SpaceClaim Direct Modeler 幾何建模實例 64 2.5 ANSYS Meshing 18.0網格劃分平臺 68 2.5.1 Meshing網格劃分適用領域

68 2.5.2 Meshing網格劃分方法 68 2.5.3 Meshing網格默認設置 71 2.5.4 Meshing網格尺寸設置 72 2.5.5 Meshing網格Patch Conforming 選項 75 2.5.6 Meshing網格膨脹層設置 79 2.5.7 Meshing網格高級選項 80 2.5.8 Meshing網格評估統計 81 2.6 ANSYS Meshing 18.0網格劃分實例 81 2.6.1 應用實例1——網格尺寸控制 81 2.6.2 應用實例2——掃掠網格劃分 87 2.6.3 外部網格導入實例1——CDB網格 導入 93 2.6.4 外部網格導入

實例2——CDB網格 導入 97 2.7 ANSYS Mechanical 18.0後處理 99 2.7.1 查看結果 99 2.7.2 結果顯示 102 2.7.3 變形顯示 102 2.7.4 應力和應變 103 2.7.5 接觸結果 104 2.7.6 自訂結果顯示 104 2.8 本章小結 105 第3章 結構靜力學分析案例詳解 106 3.1 線性靜力分析簡介 106 3.1.1 線性靜力分析 106 3.1.2 線性靜力分析流程 107 3.1.3 線性靜力分析基礎 107 3.2 靜力學分析實例1——實體靜力 分析 108 3.2.1 問題描述 108 3.2.2 啟動Work

bench並建立分析專案 108 3.2.3 導入創建幾何體 109 3.2.4 添加材料庫 109 3.2.5 添加模型材料屬性 111 3.2.6 劃分網格 112 3.2.7 施加載荷與約束 112 3.2.8 結果後處理 114 3.2.9 保存與退出 115 3.2.10 讀者演練 116 3.3 靜力學分析實例2——梁單元線性靜力 分析 116 3.3.1 問題描述 116 3.3.2 啟動Workbench並建立分析專案 117 3.3.3 創建幾何體 117 3.3.4 添加材料庫 121 3.3.5 添加模型材料屬性 122 3.3.6 劃分網格 123 3.3.7 施加載荷

與約束 124 3.3.8 結果後處理 125 3.3.9 保存與退出 126 3.3.10 讀者演練 127 3.4 靜力學分析實例3——板單元靜力分析 127 3.4.1 問題描述 128 3.4.2 啟動Workbench並建立分析專案 128 3.4.3 導入創建幾何體 128 3.4.4 添加材料庫 129 3.4.5 添加模型材料屬性 130 3.4.6 劃分網格 130 3.4.7 施加載荷與約束 131 3.4.8 結果後處理 132 3.4.9 保存與退出 133 3.4.10 讀者演練 133 3.5 靜力學分析實例4——子模型靜力分析 134 3.5.1 問題描述 134

3.5.2 啟動Workbench並建立分析專案 134 3.5.3 導入創建幾何體 134 3.5.4 添加材料庫 135 3.5.5 添加模型材料屬性 137 3.5.6 劃分網格 138 3.5.7 施加載荷與約束 138 3.5.8 結果後處理 140 3.5.9 子模型分析 141 3.5.10 保存並退出 145 3.6 本章小結 145 第4章 模態分析案例詳解 146 4.1 結構動力學分析簡介 146 4.1.1 結構動力學分析 146 4.1.2 結構動力學分析的阻尼 147 4.2 模態分析簡介 147 4.2.1 模態分析 147 4.2.2 模態分析基礎 148

4.2.3 預應力模態分析 148 4.3 模態分析實例1——模態分析 149 4.3.1 問題描述 149 4.3.2 啟動Workbench並建立分析專案 149 4.3.3 創建幾何體 150 4.3.4 添加材料庫 150 4.3.5 添加模型材料屬性 152 4.3.6 劃分網格 153 4.3.7 施加載荷與約束 153 4.3.8 結果後處理 154 4.3.9 保存與退出 157 4.4 模態分析實例2——有預應力模態分析 157 4.4.1 問題描述 157 4.4.2 啟動Workbench並建立分析專案 157 4.4.3 創建幾何體 158 4.4.4 添加材料庫 15

8 4.4.5 添加模型材料屬性 160 4.4.6 劃分網格 161 4.4.7 施加載荷與約束 161 4.4.8 模態分析 163 4.4.9 後處理 163 4.4.10 保存與退出 165 4.5 模態分析實例3——有預應力模態分析 165 4.5.1 問題描述 165 4.5.2 修改外載荷資料 166 4.5.3 模態分析 166 4.5.4 後處理 166 4.5.5 保存與退出 168 4.5.6 結論 168 4.6 本章小結 168 第5章 諧回應分析案例詳解 169 5.1 諧回應分析簡介 169 5.1.1 諧回應分析 169 5.1.2 諧回應分析的載荷與輸出 1

70 5.1.3 諧回應分析通用方程 170 5.2 諧回應分析實例1——梁單元諧回應分析 170 5.2.1 問題描述 170 5.2.2 啟動Workbench並建立分析專案 171 5.2.3 創建模態分析項目 172 5.2.4 材料選擇 172 5.2.5 施加載荷與約束 172 5.2.6 模態分析 174 5.2.7 後處理 174 5.2.8 創建諧回應分析項目 176 5.2.9 施加載荷與約束 176 5.2.10 諧回應計算 177 5.2.11 結果後處理 178 5.2.12 保存與退出 179 5.3 諧回應分析實例2——實體模型諧回應 分析 180 5.3.1 問

題描述 180 5.3.2 啟動Workbench並建立分析專案 180 5.3.3 材料選擇 181 5.3.4 施加載荷與約束 181 5.3.5 模態分析 183 5.3.6 後處理 183 5.3.7 諧回應分析設置和求解 185 5.3.8 諧回應計算 186 5.3.9 結果後處理 186 5.3.10 保存與退出 188 5.4 本章小結 188 第6章 回應譜分析案例詳解 189 6.1 回應譜分析簡介 189 6.1.1 頻譜的定義 189 6.1.2 回應譜分析的基本概念 190 6.2 回應譜分析實例1——簡單橋樑 回應譜分析 192 6.2.1 問題描述 192 6.

2.2 啟動Workbench並建立分析專案 193 6.2.3 導入幾何體模型 193 6.2.4 靜態力學分析 194 6.2.5 添加材料庫 194 6.2.6 劃分網格 194 6.2.7 施加約束 195 6.2.8 模態分析 197 6.2.9 結果後處理 197 6.2.10 回應譜分析 198 6.2.11 添加加速度譜 199 6.2.12 後處理 199 6.2.13 保存與退出 201 6.3 回應譜分析實例2——建築物框架 回應譜分析 201 6.3.1 問題描述 201 6.3.2 啟動Workbench並建立分析專案 202 6.3.3 導入幾何體模型 203 6.

3.4 靜態力學分析 203 6.3.5 添加材料庫 204 6.3.6 劃分網格 204 6.3.7 施加約束 205 6.3.8 模態分析 206 6.3.9 結果後處理 206 6.3.10 回應譜分析 207 6.3.11 添加加速度譜 208 6.3.12 後處理 209 6.3.13 保存與退出 210 6.4 本章小結 210 第7章 隨機振動分析案例詳解 211 7.1 隨機振動分析簡介 211 7.2 隨機振動分析實例1——簡單橋樑隨機 振動分析 212 7.2.1 問題描述 212 7.2.2 啟動Workbench並建立分析專案 213 7.2.3 導入幾何體模型 21

3 7.2.4 靜態力學分析 214 7.2.5 添加材料庫 214 7.2.6 劃分網格 215 7.2.7 施加約束 216 7.2.8 模態分析 217 7.2.9 結果後處理 217 7.2.10 隨機振動分析 219 7.2.11 添加加速度譜 219 7.2.12 後處理 220 7.2.13 保存與退出 221 7.3 隨機振動分析實例2——建築物框架隨機 振動分析 221 7.3.1 問題描述 222 7.3.2 啟動Workbench並建立分析專案 222 7.3.3 導入幾何體模型 223 7.3.4 靜態力學分析 223 7.3.5 添加材料庫 224 7.3.6 劃分網

格 224 7.3.7 施加約束 225 7.3.8 模態分析 226 7.3.9 結果後處理 226 7.3.10 隨機振動分析 227 7.3.11 添加加速度譜 227 7.3.12 後處理 228 7.3.13 保存與退出 229 7.4 本章小結 229 第8章 瞬態動力學分析案例詳解 230 8.1 瞬態動力學分析簡介 230 8.1.1 瞬態動力學分析 230 8.1.2 瞬態動力學分析基本公式 230 8.2 瞬態動力學分析實例1——蝸輪蝸杆傳動 分析 231 8.2.1 問題描述 231 8.2.2 啟動Workbench並建立分析專案 231 8.2.3 導入幾何體模型

232 8.2.4 瞬態動力學分析參數設置 233 8.2.5 添加材料庫 234 8.2.6 劃分網格 234 8.2.7 施加約束 234 8.2.8 結果後處理 235 8.2.9 保存與退出 237 8.3 瞬態動力學分析實例2——活塞運動 分析 237 8.3.1 問題描述 237 8.3.2 啟動Workbench並建立分析專案 238 8.3.3 導入幾何體模型 238 8.3.4 瞬態動力學分析屬性設置 239 8.3.5 添加材料庫 241 8.3.6 劃分網格 242 8.3.7 施加約束 242 8.3.8 結果後處理 243 8.3.9 保存與退出 244 8.4 活塞

運動優化分析 245 8.5 本章小結 247 第9章 接觸分析案例詳解 248 9.1 接觸分析簡介 248 9.2 靜態接觸分析實例——鋁合金板孔受力 分析 250 9.2.1 問題描述 250 9.2.2 啟動Workbench並建立分析專案 250 9.2.3 建立幾何體模型 250 9.2.4 添加材料庫 252 9.2.5 添加模型材料屬性 252 9.2.6 創建接觸 252 9.2.7 劃分網格 252 9.2.8 施加載荷與約束 254 9.2.9 結果後處理 254 9.2.10 保存與退出 256 9.3 本章小結 256 第10章 顯示動力學分析案例詳解 257 1

0.1 顯示動力學分析簡介 257 10.2 顯示動力學分析實例1——鋼球撞擊 金屬網分析 258 10.2.1 問題描述 259 10.2.2 啟動Workbench並建立分析 項目 259 10.2.3 啟動Workbench LS-DYNA建立 項目 260 10.2.4 材料選擇與賦予 260 10.2.5 建立專案分析 261 10.2.6 分析前處理 262 10.2.7 施加載荷 262 10.2.8 結果後處理 264 10.2.9 保存與退出 266 10.3 顯示動力學分析實例2——金屬塊 穿透鋼板分析 266 10.3.1 問題描述 266 10.3.2 啟動Workbe

nch並建立分析 項目 266 10.3.3 繪製幾何模型 267 10.3.4 材料選擇 269 10.3.5 顯示動力學分析前處理 271 10.3.6 施加約束 272 10.3.7 結果後處理 273 10.3.8 啟動AUTODYN軟體 274 10.3.9 LS-DYNA計算 276 10.3.10 保存與退出 278 10.4 本章小結 278 第11章 複合材料分析案例詳解 279 11.1 複合材料概論 279 11.2 ANSYS ACP模組功能概述 280 11.3 複合材料靜力學分析實例——複合板 受力分析 283 11.3.1 問題描述 283 11.3.2 啟動W

orkbench軟體 284 11.3.3 靜力分析項目 284 11.3.4 定義複合材料資料 285 11.3.5 資料更新 287 11.3.6 ACP複合材料定義 288 11.3.7 有限元計算 293 11.3.8 後處理 294 11.3.9 ACP專業後處理工具 294 11.3.10 保存與退出 296 11.4 本章小結 296 第12章 疲勞分析案例詳解 297 12.1 疲勞分析簡介 297 12.2 疲勞分析實例——軸疲勞分析 299 12.2.1 問題描述 299 12.2.2 啟動Workbench並建立分析 項目 300 12.2.3 導入幾何模型 300 1

2.2.4 添加材料庫 300 12.2.5 添加模型材料屬性 300 12.2.6 劃分網格 301 12.2.7 施加載荷與約束 302 12.2.8 結果後處理 303 12.2.9 添加Fatigue Tool工具 304 12.2.10 疲勞分析 304 12.2.11 保存與退出 306 12.3 本章小結 306 第13章 多體動力學分析案例詳解 307 13.1 多體動力學分析簡介 307 13.2 多體動力學分析實例——挖掘機臂 運動分析 308 13.2.1 問題描述 308 13.2.2 啟動Workbench並建立分析 項目 308 13.2.3 導入幾何模型 309

13.2.4 多體動力學分析 309 13.2.5 添加材料庫 312 13.2.6 劃分網格 312 13.2.7 施加約束 312 13.2.8 結果後處理 314 13.2.9 保存與退出 315 13.3 本章小結 316 第14章 穩態熱力學分析案例詳解 317 14.1 熱力學分析簡介 317 14.1.1 熱力學分析目的 317 14.1.2 熱力學分析 317 14.1.3 基本傳熱方式 318 14.2 穩態熱力學分析實例1——熱傳遞 分析 319 14.2.1 問題描述 319 14.2.2 啟動Workbench並建立分析 項目 319 14.2.3 導入幾何模型 3

20 14.2.4 創建分析項目 320 14.2.5 添加材料庫 321 14.2.6 添加模型材料屬性 322 14.2.7 劃分網格 323 14.2.8 施加載荷與約束 323 14.2.9 結果後處理 324 14.2.10 保存與退出 326 14.3 穩態熱力學分析實例2——熱對流分析 326 14.3.1 問題描述 327 14.3.2 啟動Workbench並建立分析 項目 327 14.3.3 導入幾何模型 327 14.3.4 創建分析項目 328 14.3.5 添加材料庫 328 14.3.6 添加模型材料屬性 330 14.3.7 劃分網格 330 14.3.8 施加

載荷與約束 331 14.3.9 結果後處理 332 14.3.10 保存與退出 333 14.3.11 讀者演練 333 14.4 穩態熱力學分析實例3——熱輻射分析 334 14.4.1 案例介紹 334 14.4.2 啟動Workbench並建立分析 項目 334 14.4.3 定義材料參數 334 14.4.4 導入模型 335 14.4.5 劃分網格 335 14.4.6 定義荷載 337 14.4.7 後處理 338 14.4.8 保存並退出 340 14.5 本章小結 340 第15章 瞬態熱力學分析案例詳解 341 15.1 熱力學分析簡介 341 15.1.1 瞬態熱力學分

析目的 341 15.1.2 瞬態熱力學分析 341 15.2 瞬態熱力學分析實例1——散熱片瞬態 熱學分析 342 15.2.1 問題描述 342 15.2.2 啟動Workbench並建立分析 項目 342 15.2.3 創建瞬態熱分析 342 15.2.4 施加載荷與約束 343 15.2.5 後處理 343 15.2.6 保存與退出 344 15.3 瞬態熱學分析實例2——高溫鋼球瞬態 熱學分析 344 15.3.1 問題描述 344 15.3.2 啟動Workbench並建立分析 項目 345 15.3.3 創建瞬態熱分析 345 15.3.4 施加載荷與約束 346 15.3.5

後處理 347 15.3.6 保存與退出 348 15.4 本章小結 348 第16章 流體動力學分析案例詳解 349 16.1 流體動力學分析簡介 349 16.1.1 流體動力學分析 349 16.1.2 CFD基礎 352 16.2 流體動力學實例1——CFX內流場 分析 359 16.2.1 問題描述 360 16.2.2 啟動Workbench並建立分析 項目 360 16.2.3 創建幾何體模型 360 16.2.4 網格劃分 361 16.2.5 流體動力學前處理 362 16.2.6 流體計算 364 16.2.7 結果後處理 365 16.3 流體動力學實例2——Fluen

t流場分析 367 16.3.1 問題描述 367 16.3.2 軟體啟動與保存 368 16.3.3 導入幾何資料檔案 368 16.3.4 網格設置 369 16.3.5 進入Fluent平臺 371 16.3.6 材料選擇 373 16.3.7 設置幾何屬性 373 16.3.8 流體邊界條件 374 16.3.9 求解器設置 375 16.3.10 結果後處理 376 16.3.11 Post後處理 378 16.4 流體動力學實例3——Icepak流場分析 380 16.4.1 問題描述 382 16.4.2 軟體啟動與保存 382 16.4.3 導入幾何資料檔案 383 16.4.

4 添加Icepak模組 384 16.4.5 求解分析 387 16.4.6 Post後處理 389 16.4.7 靜態力學分析 390 16.5 本章小結 392 第17章 電場分析案例詳解 393 17.1 電磁場基本理論 393 17.1.1 麥克斯韋方程 393 17.1.2 一般形式的電磁場微分方程 394 17.1.3 電磁場中常見邊界條件 395 17.1.4 ANSYS Workbench平臺電磁 分析 396 17.1.5 ANSOFT軟體電磁分析 396 17.2 Maxwell靜態電場分析實例——同軸電纜 電場計算 397 17.2.1 啟動Maxwell 16.0並

建立分析 項目 398 17.2.2 建立幾何模型 398 17.2.3 建立求解器及求解域 400 17.2.4 添加材料 400 17.2.5 邊界條件設置 401 17.2.6 求解計算 402 17.2.7 圖表顯示 403 17.2.8 Workbench平臺中載入Maxwell 工程檔 405 17.2.9 保存與退出 405 17.3 Maxwell直流傳導分析實例——焊接位置 的電場分析 405 17.3.1 啟動Workbench並建立分析 項目 406 17.3.2 幾何模型導入 406 17.3.3 建立求解器 407 17.3.4 添加材料 407 17.3.5 邊界條

件設置 408 17.3.6 求解計算 409 17.3.7 網格劃分 409 17.3.8 後處理 410 17.3.9 保存與退出 411 17.4 本章小結 411 第18章 磁場分析案例詳解 412 18.1 ANSOFT軟體磁場分析 412 18.2 Maxwell靜態磁場分析實例—— 磁場力計算 413 18.2.1 啟動Workbench並建立分析 項目 413 18.2.2 建立幾何模型 414 18.2.3 建立求解器及求解域 418 18.2.4 添加材料 419 18.2.5 邊界條件設置 419 18.2.6 求解計算 420 18.2.7 參數化掃描 422 18.

2.8 保存與退出 423 18.3 Maxwell渦流磁場分析實例——金屬塊 渦流損耗 424 18.3.1 啟動Workbench並建立分析 項目 424 18.3.2 幾何模型的導入 425 18.3.3 建立求解器 425 18.3.4 添加材料 426 18.3.5 邊界條件設置 426 18.3.6 求解計算 427 18.3.7 損耗計算 429 18.3.8 保存與退出 429 18.4 Maxwell瞬態磁場分析實例——金屬塊 渦流損耗 430 18.4.1 啟動Workbench並建立分析 項目 430 18.4.2 建立求解器 431 18.4.3 建立幾何模型 431

18.4.4 添加材料 432 18.4.5 邊界條件設置 433 18.4.6 網格劃分 434 18.4.7 求解計算 435 18.4.8 圖表顯示 437 18.4.9 3D圖表顯示 438 18.4.10 保存與退出 439 18.5 本章小結 439 第19章 多物理場耦合分析案例詳解 440 19.1 多物理場耦合分析簡介 440 19.1.1 多物理場耦合分析 440 19.1.2 多物理場應用場合 441 19.2 耦合實例1——Maxwell和Mechanical線圈 電磁結構瞬態耦合 442 19.2.1 問題描述 442 19.2.2 軟體啟動與保存 443 19.2

.3 導入幾何資料檔案 443 19.2.4 求解器與求解域的設置 444 19.2.5 賦予材料屬性 444 19.2.6 添加激勵 445 19.2.7 模型檢查與計算 447 19.2.8 後處理 448 19.2.9 創建電磁分析環境 449 19.2.10 創建力學分析和資料共用 450 19.2.11 材料設置 451 19.2.12 網格劃分 452 19.2.13 添加邊界條件與映射激勵 452 19.2.14 求解計算 454 19.2.15 後處理 454 19.2.16 關閉Workbench平臺 455 19.3 耦合實例2——FLUENT和Mechanical 流體結

構耦合分析 455 19.3.1 載入工程檔 455 19.3.2 結構力學計算 455 19.3.3 材料設置 457 19.3.4 網格劃分 458 19.3.5 添加邊界條件與映射激勵 458 19.3.6 求解計算 459 19.3.7 後處理 460 19.3.8 讀者演練 460 19.4 耦合實例3——Maxwell和Mechanical 線圈電磁結構瞬態耦合 461 19.4.1 問題描述 461 19.4.2 軟體啟動與保存 461 19.4.3 導入幾何資料檔案 461 19.4.4 求解器與求解域的設置 462 19.4.5 賦予材料屬性 463 19.4.6 添加激勵

464 19.4.7 模型檢查與計算 466 19.4.8 後處理 467 19.4.9 創建力學分析和資料共用 469 19.4.10 材料設置 470 19.4.11 網格劃分 471 19.4.12 添加邊界條件與映射激勵 471 19.4.13 求解計算 473 19.4.14 後處理 473 19.4.15 關閉Workbench平臺 474 19.5 耦合實例4——Maxwell和Icepak電磁 熱流耦合 474 19.5.1 問題描述 474 19.5.2 軟體啟動與保存 475 19.5.3 建立電磁分析 475 19.5.4 幾何模型的建立 476 19.5.5 求解域的設

置 480 19.5.6 賦予材料屬性 480 19.5.7 添加激勵 481 19.5.8 分析步創建 482 19.5.9 模型檢查與計算 482 19.5.10 後處理 483 19.5.11 創建幾何資料共用 484 19.5.12 添加Icepak模組 485 19.5.13 求解分析 488 19.5.14 Post後處理 490 19.6 本章小結 491 附錄A Simplorer電力電子系統模擬模組 492 附錄B ANSYS Workbench平臺ACT 模組 496 參考文獻 498

銑削加工表面粗糙度之最佳化分析

為了解決ansys workbench的問題,作者鄭閔文 這樣論述:

在航空工業中,飛機引擎於高溫高壓的旋轉之下,機件上的瑕疵所造成的損傷皆會被放大來看,而發動機的壓縮機構表面要求更為嚴峻。因此相較於其他的產業,零件的表面要求也更加嚴格。當表面達不到需求或有一小段刮痕時,對於引擎的運轉上可能就會造成極大的飛安事件。不同的表面粗糙度,應用的引擎區域也有所不同,針對不同的表面粗糙度,加工的方式也有所不同,一般車床銑床的表面粗糙度相較磨床之下可以高出很多,通常加工完的表面都會有些微的切削痕跡,也就是我們常說的刀痕,而這些刀痕也和加工的參數息息相關。對於銑床來說,刀具業者會提供銑刀的加工參數,但基於材料、硬度、加工環境等不同的因素下,必須調整加工參數使零件有良好的表面

粗糙度。但在遇到表面粗糙度低的表面時,加工刀具的參數更是要測試多次才有可能測試出需求的表面粗糙度。為了有效減少開發時間與測試件的成本,本文將加工參數透過有限元素分析軟體ANSYS模擬零件加工的表面、應力、應變等情況後,再比對實際加工的表面參數是否與模擬的結果吻合。研究結果顯示,對於夾持的接觸面積來說面積越大,所得到的表面粗糙度及震刀越小;刀長的長度越短,粗糙度與震刀痕跡也越小;在有效率的進給條件下,進給越少,表面粗糙度及震刀痕越小;刀具轉速在適合的範圍內越快,其表面粗糙度及震刀痕會越低。

Finite Element Simulations with ANSYS Workbench 2019(附影音光碟)

為了解決ansys workbench的問題,作者李輝煌  這樣論述:

  This book is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds

from scratch. An accompanying DVD contains all the files readers may need if they have trouble. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical, short, yet comprehensive. Key concepts are inserted whenever appropriate

and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter.  

超音波焊頭振動分析與最佳化設計

為了解決ansys workbench的問題,作者何任凱 這樣論述:

超音波焊頭在超音波加工系統中具有振幅放大、減小諧振阻抗等功用,主要功用是於振動時能將位移或速度放大,並將超音波能量集中在較小的面積上,是超音波振動系統設計中的重要組成部分,超音波焊頭的常見設計方法主要有以下五種方法,解析法、等效電路法和等機械阻抗法、轉換矩陣法和有限元法。超音波焊頭的各種參數可以通過複雜的計算或傳統的分析方法獲得。然而在一般的最佳化設計流程中,往往是針對單一性能目標,改變幾何參數來進行優化,然而上述的做法並不能找出各設計變數與性能目標的關聯性、設計的準則與優化的定律,也不能量化設計參數對於性能目標的影響。因此一個良好的最佳化設計,必須能夠建立輸入參數與輸出參數的關聯性,讓設計

者能依照多個不同的性能目標,在參數間取捨,得到最佳化設計的結果,而ANSYS DesignXplorer不僅提供了如上述最佳化設計的功能而且大大簡化了計算過程。本論文係以ANSYS Workbench針對製造超音波加工機的公司所提供之市售超音波焊頭做模態分析,並進行超音波焊頭頻率測試來驗證模擬分析後所得到之動態特性參數,最後以ANSYS DesignXplorer來進行反應曲面最佳化,並將設計結果與市售焊頭進行比較。