RF balun的問題,透過圖書和論文來找解法和答案更準確安心。 我們查出實價登入價格、格局平面圖和買賣資訊

另外網站RF Circuit Design - 第 158 頁 - Google 圖書結果也說明:The task of impedance matching can therefore be avoided by the use of a transformer balun. This is a considerable benefit because in RF circuit design, ...

國立臺北科技大學 電子工程系 楊濠瞬所指導 吳冠昊的 CMOS三路Doherty功率放大器 (2021),提出RF balun關鍵因素是什麼,來自於Doherty功率放大器、第五代行動通訊、負載調變、功率回推、功率結合變壓器三明治型耦合方形同中心漩渦變壓器。

而第二篇論文國立臺灣師範大學 電機工程學系 蔡政翰所指導 何泰廷的 毫米波寬頻鏡像訊號抑制接收機設計 (2021),提出因為有 互補式金氧半導體製程、可變增益放大器、電流控制架構、鏡像訊號抑制混頻器、鏡像拒斥比、電壓緩衝放大器、共源級組態的重點而找出了 RF balun的解答。

最後網站Nonlinear Microwave and RF Circuits - 第 522 頁 - Google 圖書結果則補充:As such , it may not be suitable in RF circuits designed for lowvoltage portable ... 11.3.4 Active Baluns Active baluns are , in fact , linear amplifiers ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了RF balun,大家也想知道這些:

CMOS三路Doherty功率放大器

為了解決RF balun的問題,作者吳冠昊 這樣論述:

本論文提出新的Doherty功率放大器架構,應用於第五代行動通訊新空中介面第一型頻率範圍的n38頻帶,並使用互補式金屬氧化物半導體製程設計,輸入採用8字型平衡不平衡轉換器做為分波器並提升隔離度,輸出使用新設計的三明治型耦合方形同中心漩渦式變壓器做為輸出結合器及提供阻抗轉換比以達到良好的阻抗匹配並達到3路Doherty功率放大器的特性。第一章介紹為什麼需要Doherty功率放大器。第二章利用公式推導來理解Doherty放大器電路的操作行為。第三章分析不同型式的功率結合變壓器及基於變壓器的負載調變效應和簡介不同架構型式的Doherty放大器。第四章闡述本論文如何設計輸入及輸出變壓器以達到3路Do

herty放大器的特性並進行晶片量測,在2.6-GHz連續波的量測下,飽和輸出功率為23.05 dBm、增益為3.35 dB、汲極效率為12.55%、功率附加效率 6.33%;在功率回推2.65 dB時,汲極效率和功率附加效率分別為12%及6.25%;在功率回推8.36 dB時,汲極效率和功率附加效率分別為10%及4.43%。而採用第五代行動通訊20-MHz通道頻寬64-QAM調變信號在鄰近通道洩漏比和頻譜遮罩剛好通過時的輸出功率為-0.46 dBm,汲極效率及功率附加效率分別為1.94%和-0.21%。第五章為本論文總結及未來展望。

毫米波寬頻鏡像訊號抑制接收機設計

為了解決RF balun的問題,作者何泰廷 這樣論述:

隨著毫米波頻段的發展,在相位陣列(Phase Array)架構的射頻接收機中,混頻器(Mixer)和可變增益放大器(Variable Gain Amplifier)為重要的元件。由於互補式金氧半導體製程(CMOS)的進步,使得CMOS具有低功率消耗、低成本及高整合度的優勢。本論文將使用標準65-nm 1P9M互補式金屬氧化物半導體製程(Standard 65-nm 1P9M CMOS process),實現28 GHz鏡像訊號抑制降頻器與2-6 GHz可變增益放大器,最後整合兩電路,實現寬頻鏡像訊號抑制接收機。第一個電路為28 GHz鏡像訊號抑制混頻器,為一種降頻器。將RF訊號和LO訊號混和

成IF訊號,使用的技術為I/Q訊號調變(I/Q Modulator)。RF訊號使用威爾京生功率分配器(Wilkinson Power Divider)將訊號分配到I 路徑和Q 路徑降頻器,並且藉由給予兩顆混頻器LO正交訊號和RF訊號,將兩個訊號透過馬相巴倫轉成四相位訊號合成。輸出IF端使用多相位濾波器(Poly Phase Filter)將四相位輸出訊號合成差動訊號。當電晶體閘極偏壓為0.3 V,LO驅動功率為3 dBm時,頻帶為24 ~ 27 GHz,轉換增益(Conversion Gain)範圍為-24 ± 0.3 dB,鏡像拒斥比(Image Rejection Ratio)皆小於-30

dBc。1-dB增益壓縮點之輸入功率〖IP〗_1dB約為-2 dBm。整體功率消耗約為0 mW。整體晶片佈局面積為745μm×770μm(含PAD)和620μm×660μm(不含PAD)。第二個電路為2-6 GHz可變增益放大器,第一級為電壓緩衝放大器(Voltage Buffer),電路核心使用Inverter Buffer,第二級使用共源級組態(Common Source Mode)。可變方式採用電流控制架構(Current Steering),透過類比控制技術,使放大器增益可變。當供應電壓V_DD為1.2 V且V_C= 0 V時,增益約為5.29 dB ~ 20.82 dB,可變增益範

圍約有15.53 dB。1-dB增益壓縮點之輸出功率〖OP〗_1dB約為3.8 dBm。整體功率消耗約為43.2 mW。整體晶片面積為665μm×770μm(含PAD)和545μm×595μm(不含PAD)。第三個電路為毫米波寬頻鏡像訊號抑制接收機,由上述兩電路整合實現鏡像訊號抑制接收機。將混頻器混頻後的結果透過可變增益放大器放大,並透過可變技術配合系統產生不同轉換增益,讓此系統有足夠的轉換增益(Conversion Gain)。當電晶體閘極偏壓為0.3 V,LO驅動功率為3 dBm,供應電壓V_DD為1.2 V且V_C= 0 V時,頻帶為23 ~ 29 GHz,轉換增益(Conversion

Gain)範圍為-0.5± 0.5 dB,鏡像拒斥比(Image Rejection Ratio)在此頻段皆小於-30 dBc。1-dB增益壓縮點之輸入功率〖IP〗_1dB約為-1 dBm。整體功率消耗約為43.2 mW。整體晶片面積為1405μm×770μm。